火焰辅助的超声喷雾热解工艺(超声喷雾热解法)

2023-01-05 18:08:08 最新游戏资讯 坑剧哥

润滑油是不是危险品?

润滑油不是危险品,危险品指易燃、易爆、有强烈腐蚀性、有毒和放射性等物品润滑油不属于此类。

润滑油一般由基础油和添加剂两部分组成。基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足,赋予某些新的性能,是润滑油的重要组成部分。

扩展资料

润滑油理化性质:

1、外观(色度)

油品的颜色,往往可以反映其精制程度和稳定性。对于基础油来说,一般精制程度越高,其烃的氧化物和硫化物脱除的越干净,颜色也就越浅。但是,即使精制的条件相同,不同油源和基属的原油所生产的基础油,其颜色和透明度也可能是不相同的。

2、密度

润滑油的密度随其组成中含碳、氧、硫的数量的增加而增大,因而在同样粘度或同样相对分子质量的情况下,含芳烃多的,含胶质和沥青质多的润滑油密度最大,含环烷烃多的居中,含烷烃多的最小。

参考资料来源:百度百科-润滑油

参考资料来源:百度百科-危险品

火焰辅助的超声喷雾热解工艺(超声喷雾热解法) 第1张

喷雾热解喷雾干燥区别正极

您想问的是喷雾热解喷雾干燥如何区别正极吗?使用雾化分离。

喷雾干燥法将溶液分散成小液滴喷入热风中,使之快速干燥的方法,喷雾热解法将金属盐溶液喷雾至高温气氛中,溶剂蒸发和金属盐热解在瞬间同时发生,从而直接合成氧化物粉末的方法来区别。

喷雾热解是指将金属盐溶液以雾状喷入高温气氛中,此时立即引起溶剂的蒸发和金属盐的热分解,随后因过饱和而析出固相,从而直接得到纳米粉体,或者是将溶液喷入高温气氛中干燥,然后再经热处理形成粉体。

氧化锆陶瓷与氧化铝陶瓷哪个更耐磨?

氧化锆陶瓷和氧化铝陶瓷用在同样的工况下,氧化锆陶瓷更耐磨,更抗冲击。

氧化锆陶瓷:

氧化锆陶瓷呈白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。

氧化铝陶瓷:

氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。

急求纳米二氧化钛的制备方法,越多越好。要具体的试验方案,谢了,化学百晓生

一、等离子体法

等离子体法是通过激活载气携带的原料形成等离子体,再加热反应生成超微粒子的方法。以TiCl4为原料,氢气为载气,氧气为反应气体,应用频率为2450MHz的微波诱导可合成有机膜包裹的TiO2。1992年,日本东北大学采用等离子体(ICP)喷雾热解法以Ti的氯化物为原料制得了Ti的氧化物的超微粉。等离子体喷雾法是利用等离子体喷枪能产生50000K高温的特点,将这种喷枪的喷出物急骤冷却而生成纳米级的超微粒子

二、水解法

水解法主要是利用金属盐在酸性溶液中强迫水解产生均匀分散的纳米粒子。已有报道,在硫酸根离子和磷酸根离子存在条件下,用20min到两周左右缓慢地加水分解氯化钛溶液时可得到金红石型纳米TiO2。水解法又可以分为很多种,以下是几种常见的水解法:

1、TiCl4氢氧火焰水解法

该法是将TiCl4气体导入氢氧火焰中(700~1000℃)进行水解,其化学反应式为:TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)

这种工艺制备的粉体一般是锐钛型和金红石型的混合型产品,纯度高、粒径小、表面积大、分散性好、团聚程度较小,但成本较高。

2、钛醇盐气相水解法

该工艺最早由美国麻省理工学院开发成功。其化学反应式为:

nTi(OR)4(g)+4nH2O(g)→nTi(OH)4(s)+4nROH(g)

nTi(OH)4(s)→nTiO2·H2O(g)

nTiO2·H2O(s)→nTiO2·nH2O(g)

日本某公司以氮气、氦气或空气作载气,将钛醇盐蒸汽和水蒸气导入反应器的反应区,进行瞬间混合和快速水解反应而制得纳米TiO2。这种方法可以通过改变反应区内各种参数来调节所制得的纳米TiO2的粒径和粒子形状。

3、碱中和水解法

该法主要是以TiCl4或TiOSO4为原料,将其配制成一定浓度的溶液后,加入碱性溶液进行中和水解或加热水解,所得二氧化钛水合物经解聚、洗涤、干燥和煅烧处理即可得纳米TiO2[4]。这种方法可以通过改变煅烧温度得到不同晶型的纳米二氧化钛产品。此法原料来源广泛、成本较低,只要严格控制工艺参数就能得到分散性好、粒径小、粒度分布窄的纳米二氧化钛粉体。这种方法是液相法中最具有发展潜力的方法。

4、钛醇盐水解法

以钛醇盐为原料,通过水解和缩聚反应制得溶胶,再进一步缩聚得到凝胶,凝胶经干燥和煅烧处理即可得纳米TiO2[4]。其化学反应式为:

水解:Ti(OR)4+nH2O→Ti(OR)(4-n)(OH)n+nROH

缩聚:2Ti(OR)(4-n)(OH)n→[Ti(OR)(4-n)(OH)(n-1)]2O+H2O

该法最大的缺点是原料成本高,制得的纳米TiO2颗粒间易团聚。

三、热合成法

以水或有机溶剂作溶媒,在内衬耐腐蚀材料的密闭高压釜中加入纳米二氧化钛的前驱体,按一定升温速度加热,待高压釜达所需温度值,恒温一段时间,卸压后经洗涤、干燥即可得纳米TiO2。当以有机溶剂作溶媒时,在Ti和H2O2生成的TiO2·xH2O干凝剂中,以CCl4作溶剂,在温度90℃下可制备出超微锐钛型TiO2。

四、溶胶—凝胶法

溶胶—凝胶法主要是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥,焙烧去除有机成分,最后得到无机材料。该法工艺简单,易于操作,是目前用得比较多的方法。

1、方法一

将Ti(OBu)4在搅拌条件下缓慢滴加到无水乙醇中形成透明溶液(A),另将稀HNO3中加入无水乙醇和二次蒸馏水,形成透明溶液(B),将B溶液在剧烈搅拌下缓慢地滴加到A溶液中,形成透明溶胶,放置数日得到其凝胶,干燥、焙烧即可得纳米TiO2粉体[7]。

2、方法二

将10mlTiCl4缓慢滴入40ml氨水中,抽滤得白色沉淀,洗涤至无Cl—,烘干,称量。取少许溶于浓草酸得草酸氧钛溶液。在草酸氧钛溶液中加入柠檬酸和乙酸铵,80℃加热搅拌4~6h得透明凝胶,将此透明凝胶放入烘箱,在150~200℃使其炭化,然后在马弗炉里500℃灼烧即可得纳米TiO2。

3、方法三

钛醇盐溶于溶剂(一般选用小分子醇作为溶剂)中形成均相溶液,钛醇盐与水发生水解反应,同时发生失水和失醇缩聚反应,生成物聚集形成溶胶,经陈化,溶胶形成三维网格而形成凝胶,干燥凝胶以除去残余水分、有机基团和有机溶剂,即可得到纳米TiO2粉体。

4、方法四

在快速搅拌下,将浓氨水缓慢加入到TiO2的钛盐溶液中,直至溶液变为粘稠状胶体,然后调节pH到7,陈化1h后,进行浓缩、烘干,待水分含量达10%左右后成球处理,过0.25mm筛后,加入适量乙醇,在70℃下烘干,并进一步在450℃下煅烧2h即制得了纳米TiO2。

5 、方法五

将20ml无水乙醇与10ml钛酸四丁酯倒入分液漏斗混合均匀,打开漏斗活塞,在40℃的水浴中加热条件下,将混合液逐滴搅拌加入事先加了20ml无水乙醇和25ml冰乙酸的烧杯中。控制滴速为1d/s,滴加完毕后再加入0.7gPEG—4000。然后滴加浓硝酸,调节pH值约为1.0时,将该透明溶液移到烧杯中,在40℃的水浴加热中超声振荡15min使烧杯中生成淡黄色凝胶,放入冰箱,在-6℃冷冻0.5h,使凝胶结冰,再在-50℃下冷冻干燥2h,然后取出松软的干凝胶粉用玛瑙研钵研磨,在空气氛中置入马弗炉中,以5℃/min升温速度在400℃煅烧2h,即得纳米TiO2。

五、溅射法

该法主要是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,把两电极间控制在0.3~1.5KV,使Ar气在两电极间的辉光作用下形成离子,从而冲击阴极靶材表面,使靶材表面原子蒸发出来形成纳米粒子,并在附着面上沉积下来。沈杰[10]等人就以TiO2为靶材、氩气为溅射气体,控制溅射气压为1Pa,射频溅射功率为150W、频率为13.56MHz,将真空室的极限真空抽至1×10-4Pa,再以清洗干净的普通载玻片和ITO玻璃为基板,不加温情况下使薄膜沉积2h,再在300℃~500℃下退火1h制得了纳米TiO2薄膜。

热解法的喷雾热解法

(1)干燥所需时间短,因此每一颗多组分细微液滴在反应过程中来不及发生偏析,从而可以获得组分均匀的纳米粒子;

(2)由于原料是在溶液状态下均匀混合,所以可以精确地控制所合成的化合物组成;

(3)可以通过不同的工艺条件来制得各种不同形态和性能的超微粒子,此法制得的纳米粒子表观密度小、比表面积大、粉体烧结性能好;

(4)操作简单,反应一次完成,可连续进行生产。 轻质碳酸镁及氧化镁产品是重要的无机盐原料,广泛应用于橡胶、塑料、电子、造纸、医药等行业,通过降低这类产品的成本,有可能大规模应用于高纯耐火材料行业。 中国主要采用白云石及菱镁矿直接碳化法生产碳酸镁及氧化镁,生产工艺造成高耗能,环境高污染。以白云石法为例,每生产一吨氧化镁产品需消耗14.2吨标准煤,对于许多小型企业能耗达到10-12吨煤,尤其近年中煤价的上涨,造成了企业效益大幅度下降;另外无论白云石及菱镁矿法,均产生大量废水,生产一吨产品需要消耗150-200吨水,无法复用,只能排放到环境中,会产生污染。因此如何降低镁盐生产过程的能耗及降低污染,已成为企业发展瓶颈。

分析轻质碳酸镁及氧化镁产品的主要能耗分布发现:热分解过程是氧化镁生产过程主要的能量消耗所在,原因是通常碳化得到重镁水中氧化镁的浓度仅为5-8g/L,要将如此低浓度的重镁水加热到1000℃以上热解,从而造成氧化镁生产的高能耗,如能常温实现重镁水的分解得到碳酸镁,将大幅度降低生产的能耗,提高企业的经济效益。清华大学于1996年开始致力于利用菱镁矿生产镁盐系列产品的研究。又开展重镁水常温分解,菱镁矿轻烧粉直接碳化生产高纯度氧化镁,卤水-石灰生产高纯度方面的研究,并取得了突破性的进展,在常温下实现了重镁水分解,分解率达到90%以上(废水循环使用后回收率在99%以上),水可100%复用,可大量减少排放,符合我国目前大力倡导的循环经济的要求。该技术不但适合于菱镁矿直接碳化生产高纯度氧化镁及碳酸镁(可提供全套技术服务),同时也适合于白云石法及卤水石灰生产氧化镁的企业(对热解段进行技术改造),为企业节能降耗,通过计算每吨氧化镁产品可降低50%以上,效益在2000-3000元,同时减少了废水及燃煤排放的污染,因此经济效益及社会效益十分显著。 用途:本技术可以从废旧轮胎等废旧橡胶制品中高效率的回收油、碳黑、废钢等半成品。

简单介绍:这是一项回收处理废旧轮胎的技术,所用工艺是从乌克兰引进的“干式热解法”。

工艺流程如下:

原料准备(分级)→原料给送→热加工→蒸汽混合物的分离→碳的加工。

采用本工艺生产的处理装置通过对固体有机物的处理得到以下产品:

液烃,经进一步裂解可以获得汽油、重油、柴油燃料;

热解气,热值接近天然气,可以作为居民用气或发电用气使用;

碳黑,经过活化处理后可以得到活性炭。

优势:与国内使用的其它各种处理废旧轮胎的方法相比主要有以下优点:

安全环保,无三废排放;

出油率高,可达45%-50%;

节水节能,实现了热动力资源的高效循环和经济使用;

生产自动化;

产能弹性大,模块化设计便于控制生产规模。

目前国内对于废旧轮胎的裂解也取得了一些进展,但整体技术水平特点不明显,裂解配方不科学,产生大量的废气,对环境产生很大的污染,且均处在实验室阶段,要达到工业化生产还需要较长的时间。

喷雾热解法是怎样的?

(1)干燥所需时间短,因此每一颗多组分细微液滴在反应过程中来不及发生偏析,从而可以获得组分均匀的纳米粒子;(2)由于原料是在溶液状态下均匀混合,所以可以精确地控制所合成的化合物组成;(3)可以通过不同的工艺条件来制得各种不同形态和性能的超微粒子,此法制得的纳米粒子表观密度小、比表面积大、粉体烧结性能好;(4)操作简单,反应一次完成,可连续进行生产。对超细颗粒进行膜包覆处理可显著增强其应用功效。为了实现切实可行的有效包覆过程,在国家自然科学基金和江苏省自然科学基金的资助下研究了超细颗粒膜包覆 技术及相应装置。其一,提出以喷雾热解法和流化床喷雾干燥法相结合,研制出一种新的颗粒包膜技术流化床喷雾热解法。自行研制了一套由提升管反应器、气 固分离器和颗粒循环控制系统组成的循环流化床装置,其中,反应器配有喷雾及加热系统。以硝酸铁乙醇溶液和SiO_2颗粒为例进行了包覆试验。利用扫描电镜 和X射线能谱仪等表征手段考察了包覆结果。在此基础上提出了实验改进方案。其二,对一种已有的、具有工业化前景的颗粒包膜技术流化床化学气相沉积法进 行了改进研究。采用传统流化床为反应器,配备了气态前驱体供应系统和尾气吸收系统。